An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates

نویسندگان

  • Prashant K. Jain
  • Suneet Singh
چکیده

Analytical series solution is proposed for the transient boundary-value problem ofmultilayer heat conduction in r–h spherical coordinates. Spatially non-uniform, but time-independent, volumetric heat sources may exist in the concentric layers. Proposed solution is valid for any combination of homogenous boundary conditions of the first or second kind in the h -direction. However, inhomogeneous boundary conditions of the first, second or third kind may be applied at the inner and outer radial boundaries of the concentric layers. It is noted that the proposed solution is ‘‘free” from imaginary eigenvalues. Real eigenvalues are obtained by virtue of precluded explicit dependence of radial eigenvalues on those in the h-direction. Solution is shown to be relatively simple for the most common spherical geometries (multilayer) hemisphere and full sphere. An illustrative problem of heat conduction in a three-layer hemisphere is solved. Results along with the isotherms are shown graphically and discussed. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Conduction in Spherical Composite Vessels

This paper presents an exact analytical solution for two-dimensional conductive heat transfer in spherical composite pressure vessels .The vessels are in spherical shape and fibers are winded in circumferential direction. The analytical solution is obtained under the general boundary conditions which consist of convection, conduction and radiation inside/outside of vessel. The heat transfer equ...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

An Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates

In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit...

متن کامل

An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates

In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...

متن کامل

Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method

An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary comb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010